GNAO1 as a Novel Predictive Biomarker for Late Relapse in Hepatocellular Carcinoma
Author(s) -
Meiling Du,
Jie Feng,
Yiran Tao,
Qincong Pan,
Fengyuan Chen
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/7631815
Subject(s) - hepatocellular carcinoma , biomarker , medicine , oncology , predictive value , biology , biochemistry
GNAO1, the alpha O1 subunit of G protein, was reported to be significantly downregulated in hepatocellular carcinoma (HCC), as well as being implicated in a variety of intracellular biological events; findings suggest that it may act as a tumor suppressor. Our goal was to further explore the expression of GNAO1 in HCC patients and its potential clinical significance. Oncomine and Kaplan–Meier plotter databases were used to assess the mRNA expression of GNAO1 in HCC tissues and patient survival time. Subsequently, immunohistochemistry (IHC) was used to measure GNAO1 protein level in tissue from 79 cases of HCC and paired adjacent tissues. The Kaplan–Meier survival analysis, Cox regression model, and prognostic nomogram were used to evaluate the prognostic role of GNAO1 in HCC. Results demonstrated that mRNA and protein expressions of GNAO1 were both lower in HCC tissues than in adjacent tissues (all p < 0.01 ). HCC patients with high expression of GNAO1 had better relapse-free survival (RFS) than those with low GNAO1 expression (all p < 0.05 ). A high expression of GNAO1, meanwhile, functioned as a good predictor of late relapse for HCC ( p < 0.05 ). The nomogram consisting of GNAO1 expression and the tumor-node-metastasis (TNM) model presented good ability in predicting the 3-year relapse for HCC (C-index = 0.614). In conclusion, GNAO1 was a reliable biomarker of relapse prediction for HCC.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom