A Comparative Study of Soft Computing Models for Prediction of Permeability Coefficient of Soil
Author(s) -
Binh Thai Pham,
Manh Duc Nguyen,
Nadhir AlAnsari,
Quoc Anh Tran,
Lanh Si Ho,
Hiep Van Le,
Indra Prakash
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/7631493
Subject(s) - mean squared error , correlation coefficient , support vector machine , coefficient of determination , random forest , soil science , water content , void ratio , mathematics , permeability (electromagnetism) , computer science , machine learning , environmental science , statistics , engineering , geotechnical engineering , chemistry , biochemistry , membrane
Determination of the permeability coefficient (K) of soil is considered as one of the essential steps to assess infiltration, runoff, groundwater, and drainage in the design process of the construction projects. In this study, three cost-effective algorithms, namely, artificial neural network (ANN), support vector machine (SVM), and random forest (RF), which are well-known as advanced machine learning techniques, were used to predict the permeability coefficient (K) of soil (10−9 cm/s), based on a set of simple six input parameters such as natural water content w (%), void ratio (e), specific density (g/cm3), liquid limit (LL) (%), plastic limit (PL) (%), and clay content (%). For this, a total of 84 soil samples data collected from the detailed design stage investigations of Da Nang-Quang Ngai national road project in Vietnam was used to generate training (70%) and testing (30%) datasets for building and validating the models. Statistical error indicators such as RMSE and MAE and correlation coefficient (R) were used to evaluate and compare performance of the models. The results show that all the three models performed well (R > 0.8) for the prediction of permeability coefficient of soil, but the RF model (RMSE = 0.0084, MAE = 0.0049, and R = 0.851) is more efficient compared with the other two models, namely, ANN (RMSE = 0.001, MAE = 0.005, and R = 0.845) and SVM (RMSE = 0.0098, MAE = 0.0064, and R = 0.844). Thus, it can be concluded that the RF model can be used for accurate estimation of the permeability coefficient (K) of the soil.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom