z-logo
open-access-imgOpen Access
Music Feature Classification Based on Recurrent Neural Networks with Channel Attention Mechanism
Author(s) -
Jie Gan
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/7629994
Subject(s) - computer science , singing , convolutional neural network , set (abstract data type) , feature (linguistics) , artificial neural network , music information retrieval , artificial intelligence , digital audio , field (mathematics) , recurrent neural network , speech recognition , machine learning , audio signal , musical , art , linguistics , philosophy , speech coding , mathematics , management , pure mathematics , economics , visual arts , programming language
With the advancement of multimedia and digital technologies, music resources are rapidly increasing over the Internet, which changed listeners’ habits from hard drives to online music platforms. It has allowed the researchers to use classification technologies for efficient storage, organization, retrieval, and recommendation of music resources. The traditional music classification methods use many artificially designed acoustic features, which require knowledge in the music field. The features of different classification tasks are often not universal. This paper provides a solution to this problem by proposing a novel recurrent neural network method with a channel attention mechanism for music feature classification. The music classification method based on a convolutional neural network ignores the timing characteristics of the audio itself. Therefore, this paper combines convolution structure with the bidirectional recurrent neural network and uses the attention mechanism to assign different attention weights to the output of the recurrent neural network at different times; the weights are assigned for getting a better representation of the overall characteristics of the music. The classification accuracy of the model on the GTZAN data set has increased to 93.1%. The AUC on the multilabel labeling data set MagnaTagATune has reached 92.3%, surpassing other comparison methods. The labeling of different music labels has been analyzed. This method has good labeling ability for most of the labels of music genres. Also, it has good performance on some labels of musical instruments, singing, and emotion categories.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom