z-logo
open-access-imgOpen Access
Indoor Acoustic Signals Enhanced Algorithm and Visualization Analysis
Author(s) -
Suqing Yan,
Xiaonan Luo,
Xiyan Sun,
Jianming Xiao,
Jingyue Jiang
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/7592064
Subject(s) - computer science , cluster analysis , visualization , delaunay triangulation , algorithm , quiet , signal (programming language) , triangulation , least mean squares filter , noise (video) , artificial intelligence , pattern recognition (psychology) , speech recognition , computer vision , adaptive filter , mathematics , image (mathematics) , physics , geometry , quantum mechanics , programming language
A pure acoustic signal can be easy to realize signal analysis and feature extraction. However, the surrounding noises will affect the content of acoustic signals as well as auditory fatigue to the audience. Therefore, it is vital to overcome the problem of noises that affect the acoustic signal. An indoor acoustic signal enhanced method based on image source (IS) method, filtered-x least mean square (FxLMS) algorithm, and the combination of Delaunay triangulation and fuzzy c-means (FCM) clustering algorithm is proposed. In the first stage of the proposed system, the IS method was used to simulate indoor impulse response. Next, the FxLMS algorithm was used to reduce the acoustic signals with noise. Lastly, the quiet areas are optimized and visualized by combining the Delaunay triangulation and FCM clustering algorithm. The experimental analysis results on the proposed system show that better noise reduction can be achieved than the most widely used least mean square algorithm. Visualization was validated with an intuitive understanding of the indoor sound field distribution and the quiet areas.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom