A Chaotic-Map-Based Password-Authenticated Key Exchange Protocol for Telecare Medicine Information Systems
Author(s) -
Yanrong Lu,
Dawei Zhao
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/7568538
Subject(s) - authenticated key exchange , computer science , cryptographic nonce , password , computer security , spoofing attack , session key , key (lock) , key exchange , authentication (law) , information exchange , zero knowledge password proof , password policy , computer network , one time password , encryption , public key cryptography , telecommunications
Telecare medicine information systems (TMISs) provide e-health services such that patients can access medical resources conveniently and doctors can prescribe treatments rapidly. Authentication is an essential security requirement in TMISs. In particular, the growth of password-based remote patient authenticated key exchange combining extended chaotic maps has enhanced the level of secure communications for TMISs. Recently, Lee suggested an improved random-number-based password-authenticated key exchange (PAKE) using extended chaotic maps and synchronized-clock-based PAKE using extended chaotic maps on Guo and Zhang and Xiao et al.’s PAKE. Unfortunately, we found that the nonce-based scheme of Lee is insecure against known session-specific temporary information and server spoofing attacks. To cope with the aforementioned defects, this study aims to provide a new secure PAKE based on extended chaotic maps with more security functionalities for TMISs. Additionally, we show that the proposed scheme for TMISs provides high security along with low communication cost, computational cost, and a variety of security features.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom