z-logo
open-access-imgOpen Access
Probability Density Machine: A New Solution of Class Imbalance Learning
Author(s) -
Ruihan Cheng,
Longfei Zhang,
Shiqi Wu,
Sen Xu,
Shang Gao,
Hualong Yu
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/7555587
Subject(s) - machine learning , naive bayes classifier , artificial intelligence , class (philosophy) , computer science , context (archaeology) , bayes' theorem , gaussian , bayesian probability , conditional probability distribution , probability distribution , algorithm , mathematics , support vector machine , statistics , paleontology , physics , quantum mechanics , biology
Class imbalance learning (CIL) is an important branch of machine learning as, in general, it is difficult for classification models to learn from imbalanced data; meanwhile, skewed data distribution frequently exists in various real-world applications. In this paper, we introduce a novel solution of CIL called Probability Density Machine (PDM). First, in the context of Gaussian Naive Bayes (GNB) predictive model, we analyze the reason why imbalanced data distribution makes the performance of predictive model decline in theory and draw a conclusion regarding the impact of class imbalance that is only associated with the prior probability, but does not relate to the conditional probability of training data. Then, in such context, we show the rationality of several traditional CIL techniques. Furthermore, we indicate the drawback of combining GNB with these traditional CIL techniques. Next, profiting from the idea of K-nearest neighbors probability density estimation (KNN-PDE), we propose the PDM which is an improved GNB-based CIL algorithm. Finally, we conduct experiments on lots of class imbalance data sets, and the proposed PDM algorithm shows the promising results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom