Cost-Sensitive Siamese Network for PCB Defect Classification
Author(s) -
Yilin Miao,
Zhewei Liu,
Xiangning Wu,
Jie Gao
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/7550670
Subject(s) - computer science , printed circuit board , deep learning , artificial intelligence , false alarm , production (economics) , alarm , constant false alarm rate , machine learning , transfer of learning , real time computing , pattern recognition (psychology) , engineering , economics , macroeconomics , aerospace engineering , operating system
After the production of printed circuit boards (PCB), PCB manufacturers need to remove defected boards by conducting rigorous testing, while manual inspection is time-consuming and laborious. Many PCB factories employ automatic optical inspection (AOI), but this pixel-based comparison method has a high false alarm rate, thus requiring intensive human inspection to determine whether alarms raised from it resemble true or pseudo defects. In this paper, we propose a new cost-sensitive deep learning model: cost-sensitive siamese network (CSS-Net) based on siamese network, transfer learning and threshold moving methods to distinguish between true and pseudo PCB defects as a cost-sensitive classification problem. We use optimization algorithms such as NSGA-II to determine the optimal cost-sensitive threshold. Results show that our model improves true defects prediction accuracy to 97.60%, and it maintains relatively high pseudo defect prediction accuracy, 61.24% in real-production scenario. Furthermore, our model also outperforms its state-of-the-art competitor models in other comprehensive cost-sensitive metrics, with an average of 33.32% shorter training time.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom