z-logo
open-access-imgOpen Access
Cost-Sensitive Siamese Network for PCB Defect Classification
Author(s) -
Yilin Miao,
Zhewei Liu,
Xiangning Wu,
Jie Gao
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/7550670
Subject(s) - computer science , printed circuit board , deep learning , artificial intelligence , false alarm , production (economics) , alarm , constant false alarm rate , machine learning , transfer of learning , real time computing , pattern recognition (psychology) , engineering , economics , macroeconomics , aerospace engineering , operating system
After the production of printed circuit boards (PCB), PCB manufacturers need to remove defected boards by conducting rigorous testing, while manual inspection is time-consuming and laborious. Many PCB factories employ automatic optical inspection (AOI), but this pixel-based comparison method has a high false alarm rate, thus requiring intensive human inspection to determine whether alarms raised from it resemble true or pseudo defects. In this paper, we propose a new cost-sensitive deep learning model: cost-sensitive siamese network (CSS-Net) based on siamese network, transfer learning and threshold moving methods to distinguish between true and pseudo PCB defects as a cost-sensitive classification problem. We use optimization algorithms such as NSGA-II to determine the optimal cost-sensitive threshold. Results show that our model improves true defects prediction accuracy to 97.60%, and it maintains relatively high pseudo defect prediction accuracy, 61.24% in real-production scenario. Furthermore, our model also outperforms its state-of-the-art competitor models in other comprehensive cost-sensitive metrics, with an average of 33.32% shorter training time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom