z-logo
open-access-imgOpen Access
An Optimized Collision Avoidance Decision-Making System for Autonomous Ships under Human-Machine Cooperation Situations
Author(s) -
Xiaolie Wu,
Kezhong Liu,
Jinfen Zhang,
Zhitao Yuan,
Jiongjiong Liu,
Qing Yu
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/7537825
Subject(s) - collision avoidance , collision , computer science , automation , collision avoidance system , risk analysis (engineering) , operations research , computer security , engineering , business , mechanical engineering
Maritime Autonomous Surface Ships (MASSs) are attracting increasing attention in recent years as it brings new opportunities for water transportation. Previous studies aim to propose fully autonomous system on collision avoidance decisions and operations, either focus on supporting conflict detection or providing with collision avoidance decisions. However, the human-machine cooperation is essential in practice at the first stage of automation. An optimized collision avoidance decision-making system is proposed in this paper, which involves risk appetite (RA) as the orientation. The RA oriented collision avoidance decision-making system (RA-CADMS) is developed based on human-machine interaction during ship collision avoidance, while being consistent with the International Regulations for Preventing Collisions at Sea (COLREGS) and Ordinary Practice of Seamen (OPS). It facilitates automatic collision avoidance and safeguards the MASS remote control. Moreover, the proposed RA-CADMS are used in several encounter situations to demonstrate the preference. The results show that the RA-CADMS is capable of providing accurate collision avoidance decisions, while ensuring efficiency of MASS maneuvering under different RA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom