z-logo
open-access-imgOpen Access
YOLO-SD: A Real-Time Crew Safety Detection and Early Warning Approach
Author(s) -
Xinwei Lin,
Shengzheng Wang,
Zhen Sun,
Min Zhang
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/7534739
Subject(s) - crew , rope , warning system , supervisor , computer science , simulation , real time computing , engineering , aeronautics , structural engineering , telecommunications , law , political science
Wearing safety rope while working at the loft and over the side of a ship is an effective means to protect seafarers from accidents. However, there are no active and effective monitoring methods on ships to control this issue. In this article, a one-stage system is proposed to automatically monitor whether the crew is wearing safety ropes. When the system detects that a crew enters the work area without a safety rope, it will warn the supervisor. In this regard, a safety rope wearing detection dataset is established. Then a data augmentation algorithm and a boundary loss function are designed to improve the training effect and the convergence speed. Furthermore, features from different scales are extracted to get the final detection results. The obtained results demonstrate that the proposed approach YOLO-SD is effective at different on-site conditions and can achieve high precision (97.4%), recall rate (91.4%), and mAP (91.5%) while ensuring real-time performance (38.31 FPS on average).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom