z-logo
open-access-imgOpen Access
Quercetin Protects H9c2 Cardiomyocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Oxidative Stress and Mitochondrial Apoptosis by Regulating the ERK1/2/DRP1 Signaling Pathway
Author(s) -
Fen Li,
Dongsheng Li,
Shifan Tang,
Jianguang Liu,
Jie Yan,
Haifeng Chen,
Xisheng Yan
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/7522175
Subject(s) - oxidative stress , reactive oxygen species , apoptosis , pharmacology , reperfusion injury , ischemia , oxidative phosphorylation , mitochondrion , chemistry , medicine , cardiology , biochemistry
Reperfusion of blood flow during ischemic myocardium resuscitation induces ischemia/reperfusion (I/R) injury. Oxidative stress has been identified as a major cause in this process. Quercetin (QCT) is a member of the flavonoid family that exerts antioxidant effects. The aim of this study was to investigate the preventive effects of QCT on I/R injury and its underlying mechanism. To this end, H9c2 cardiomyocytes were treated with different concentrations of QCT (10, 20, and 40  μ M) and subsequently subjected to oxygen-glucose deprivation/reperfusion (OGD/R) administration. The results indicated that OGD/R-induced oxidative stress, apoptosis, and mitochondrial dysfunction in H9c2 cardiomyocytes were aggravated following 40  μ M QCT treatment and alleviated following the administration of 10 and 20  μ M QCT prior to OGD/R treatment. In addition, OGD/R treatment inactivated ERK1/2 signaling activation. The effect was mitigated using 10 and 20  μ M QCT prior to OGD/R treatment. In conclusion, these results suggested that low concentrations of QCT might alleviate I/R injury by suppressing oxidative stress and improving mitochondrial function through the regulation of ERK1/2-DRP1 signaling, providing a potential candidate for I/R injury prevention.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom