z-logo
open-access-imgOpen Access
A Generalizable Sample Resolution Augmentation Method for Mechanical Fault Diagnosis Based on ESPCN
Author(s) -
Zhenyun Chu,
Shanshan Ji,
Jinrui Wang,
Xiaoyu Wang,
Zongzhen Zhang,
Zhao Xue-feng,
Baokun Han
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/7496007
Subject(s) - sample (material) , resolution (logic) , fault (geology) , computer science , reliability engineering , artificial intelligence , chromatography , engineering , chemistry , geology , seismology
Data augmentation has become a hot topic in the field of mechanical intelligent fault diagnosis. It can expand the limited training dataset by generating simulated samples, but there is still no effective method augmenting the resolution of low resolution sample. In this paper, a simple algorithm, namely, efficient subpixel convolutional neural network (ESPCN), is proposed to solve this deficiency. The ESPCN model performs the arrange operation on the raw low resolution data through the subpixel layer and outputs the result of four-channel multifeature maps. Then, the sample resolution is increased to four times compared with the raw low resolution sample. Finally, the generated high resolution dataset is employed to train the stacked autoencoders (SAE) for fault classification, and the raw high resolution dataset is used for testing. Two fault diagnosis cases with different sample dimensions and rotating speeds are set up to simulate the low resolution situation, and the experimental results verify the feasibility of the proposed algorithm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom