z-logo
open-access-imgOpen Access
Fluid Equation-Based and Data-Driven Simulation of Special Effects Animation
Author(s) -
Yujuan Deng
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/7480422
Subject(s) - computer science , trajectory , artificial intelligence , animation , feature (linguistics) , computer animation , computer vision , artificial neural network , deep learning , motion estimation , algorithm , computer graphics (images) , linguistics , philosophy , physics , astronomy
This paper analyzes the simulation of special effects animation through fluid equations and data-driven methods. This paper also considers the needs of computer fluid animation simulation in terms of computational accuracy and simulation efficiency, takes high real-time, high interactivity, and high physical accuracy of simulation algorithm as the research focus and target, and proposes a solution algorithm and acceleration scheme based on deep neural network framework for the key problems of simulation of natural phenomena including smoke and liquid. With the deep development of artificial intelligence technology, deep neural network models are widely used in research fields such as computer image classification, speech recognition, and fluid detail synthesis with their powerful data learning capability. Its stable and efficient computational model provides a new problem-solving approach for computerized fluid animation simulation. In terms of time series reconstruction, this paper adopts a tracking-based reconstruction method, including target tracking, 2D trajectory fitting and repair, and 3D trajectory reconstruction. For continuous image sequences, a linear dynamic model algorithm based on pyramidal optical flow is used to track the feature centers of the objects, and the spatial coordinates and motion parameters of the feature points are obtained by reconstructing the motion trajectories. The experimental results show that in terms of spatial reconstruction, the matching method proposed in this paper is more accurate compared with the traditional stereo matching algorithm; in terms of time series reconstruction, the error of target tracking reduced. Finally, the 3D motion trajectory of the point feature object and the motion pattern at a certain moment are shown, and the method in this paper obtains more ideal results, which proves the effectiveness of the method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom