z-logo
open-access-imgOpen Access
Multimodal Blog Sentiment Classification Based on MD-HFCE
Author(s) -
Baozhen Yang,
Xuedong Tian
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/7457585
Subject(s) - computer science , sentiment analysis , dual (grammatical number) , artificial intelligence , fuzzy logic , feature (linguistics) , random forest , machine learning , pattern recognition (psychology) , data mining , art , linguistics , philosophy , literature
In recent years, the rapid growth of multimodal information has become an important factor affecting the results of sentiment analysis. However, a few state-of-the-art works take into account the multimodal features and sentiment fuzziness. To this end, a fuzzy method is proposed for assessing sentiment intensity in this paper. Firstly, based on the visual-text conversion network (CNN-LSTM), as well as sentiment optimization through SentiBank and SentiBridge, the visual features are normalized to the text features. At the same time, the emotional features of the extracted audio will be predicted by the random forest algorithm. Subsequently, the sentiment characteristics are processed by dual hesitant fuzzification to form positive and negative sentiment intensity factors. Finally, a classification method, that is, MD-HFCE (multilayer dual hesitant fuzzy comprehensive evaluation), fuzzy comprehensive evaluation method improved by Mamdani fuzzy reasoning, is proposed to realize the multifeature fuzzy sentiment classification based on the comprehensive sentiment dictionary. The classification results are applicable to the topics of sentiment monitoring. The experimental results show that the proposed algorithm can effectively realize feature integration and improve the average sentiment classification accuracy of multimodal blogs to 82.2%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom