Co-Effects of Graphene Oxide and Cement on Geotechnical Properties of Loess
Author(s) -
Dongbo Li,
Peng-Bo Lei,
Hongchi Zhang,
Jiaping Liu,
Wei Lu
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/7429310
Subject(s) - loess , cement , materials science , microstructure , cementitious , geotechnical engineering , water content , scanning electron microscope , composite material , geology , geomorphology
Improvement of geotechnical properties of soil by cementitious additives and nanomaterials is commonly used method. However, few systematic research studies on the co-effects of them on the geotechnical properties of loess have been explored. In the present research, the enhancement technique of loess was proposed based on the co-effects of graphene oxide (GO) and cement. In addition, the compactability, mechanical properties, water resistance, and microstructure of the GO/cement/loess ternary system were studied. The results revealed that, with the increase of incorporation of GO (0.03, 0.06, 0.09, and 0.12 wt. %), the optimum moisture decreased, while the dry density, mechanical properties, and water resistance increased significantly. And an optimum GO content of 0.09 wt. % was determined according to mechanical properties and water resistance. Moreover, the scanning electron microscope (SEM) results revealed that the microstructure was densified and the characteristics of pores were refined. And the co-work mechanisms of GO/cement on loess were summarized. All the results indicated that the GO/cement mixture has remarkable co-effects on the geotechnical properties of loess.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom