z-logo
open-access-imgOpen Access
Estimation of Sine Inverse Exponential Model under Censored Schemes
Author(s) -
Mansour Shrahili,
Ibrahim Elbatal,
Waleed Almutiry,
Mohammed Elgarhy
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/7330385
Subject(s) - mathematics , exponential distribution , exponential function , gamma distribution , moment (physics) , distribution (mathematics) , inverse , exponential family , distribution function , noncentral chi squared distribution , function (biology) , statistics , estimator , ratio distribution , mathematical analysis , asymptotic distribution , geometry , physics , classical mechanics , quantum mechanics , evolutionary biology , biology
In this article, we introduce a new one-parameter model, which is named sine inverted exponential (SIE) distribution. The SIE distribution is a new extension of the inverse exponential (IE) distribution. The SIE distribution aims to provide the SIE model for data-fitting purposes. The SIE distribution is more flexible than the inverted exponential (IE) model, and it has many applications in physics, medicine, engineering, nanophysics, and nanoscience. The density function (PDFu) of SIE distribution can be unimodel shape and right skewed shape. The hazard rate function (HRFu) of SIE distribution can be J-shaped and increasing shaped. We investigated some fundamental statistical properties such as quantile function (QFu), moments (Mo), moment generating function (MGFu), incomplete moments (ICMo), conditional moments (CMo), and the SIE distribution parameters were estimated using the maximum likelihood (ML) method for estimation under censored samples (CS). Finally, the numerical results were investigated to evaluate the flexibility of the new model. The SIE distribution and the IE distribution are compared using two real datasets. The numerical results show the superiority of the SIE distribution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom