z-logo
open-access-imgOpen Access
Improvement and Analysis of Semantic Similarity Algorithm Based on Linguistic Concept Structure
Author(s) -
Shan Xiao,
Cheng Di,
Pei Li
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/7322066
Subject(s) - computer science , similarity (geometry) , algorithm , semantic similarity , process (computing) , frame (networking) , convergence (economics) , data mining , point (geometry) , natural language processing , artificial intelligence , image (mathematics) , mathematics , telecommunications , economics , economic growth , operating system , geometry
With the rapid development of information age, various social groups and corresponding institutions are producing a large amount of information data every day. For such huge data storage and identification, in order to manage such data more efficiently and reasonably, traditional semantic similarity algorithm emerges. However, the accuracy of the traditional semantic similarity algorithm is relatively low, and the convergence of corresponding algorithm is poor. Based on this problem, this paper starts with the conceptual structure of language, analyzes the depth of language structure and the distance between nodes, and analyzes the two levels as the starting point. For the information of a specific data resource description frame type, the weight of interconnected edges is used for impact analysis so as to realize the semantic similarity impact analysis of all information data. Based on the above improvements, this paper also systematically establishes the data information modeling process based on language conceptual structure and establishes the corresponding model. In the experimental part, the improved algorithm is simulated and analyzed. The simulation results show that compared with the traditional algorithm, the algorithm has obvious accuracy improvement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom