z-logo
open-access-imgOpen Access
Fault Prediction of Centrifugal Pump Based on Improved KNN
Author(s) -
YunFei Chen,
Jianping Yuan,
Yin Luo,
Wenqi Zhang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/7306131
Subject(s) - mahalanobis distance , centrifugal pump , impeller , fault (geology) , computer science , vibration , pattern recognition (psychology) , engineering , artificial intelligence , mechanical engineering , seismology , geology , physics , quantum mechanics
To effectively predict the faults of centrifugal pumps, the idea of machine learning k-nearest neighbor algorithm (KNN) was introduced into the traditional Mahalanobis distance fault discrimination, and an improved centrifugal pump fault prediction model of KNN based on the Mahalanobis distance is proposed. In this method, the Mahalanobis distance is used to replace the distance function in the conventional KNN algorithm. Grid search and cross-validation are used to determine the optimal K value of the prediction model. A centrifugal pump test rig was established to solve three common faults of centrifugal pumps: cavitation, impeller damage, and machine seal damage, and the method was verified. The results show that this method can effectively distinguish the specific fault types of centrifugal pumps based on vibration signals, and the fault prediction accuracy of the off-balance condition is up to 82%. This study provides a novel idea and method for centrifugal pump fault prediction and diagnosis and avoids the interaction between parameters when monitoring multiple parameters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom