Lacunary -Invariant Convergence of Sequence of Sets in Intuitionistic Fuzzy Metric Spaces
Author(s) -
Mualla Birgül Huban
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/7302292
Subject(s) - lacunary function , mathematics , invariant (physics) , discrete mathematics , combinatorics , mathematical physics
The concepts of invariant convergence, invariant statistical convergence, lacunary invariant convergence, and lacunary invariant statistical convergence for set sequences were introduced by Pancaroğlu and Nuray (2013). We know that ideal convergence is more general than statistical convergence for sequences. This has motivated us to study the lacunary ℐ -invariant convergence of sequence of sets in intuitionistic fuzzy metric spaces (briefly, IFMS). In this study, we examine the notions of lacunary ℐ -invariant convergence W ℐ σ θ η , ν (Wijsman sense), lacunary ℐ ∗ -invariant convergence W ℐ σ θ ∗ η , ν (Wijsman sense), and q -strongly lacunary invariant convergence W N σ θ η , ν q (Wijsman sense) of sequences of sets in IFMS. Also, we give the relationships among Wijsman lacunary invariant convergence, W N σ θ η , ν q , W ℐ σ θ η , ν , and W ℐ σ θ ∗ η , ν in IFMS. Furthermore, we define the concepts of W ℐ σ θ η , ν -Cauchy sequence and W ℐ σ θ ∗ η , ν -Cauchy sequence of sets in IFMS. Furthermore, we obtain some features of the new type of convergences in IFMS.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom