z-logo
open-access-imgOpen Access
Mechanical Characteristics of Steel Shear Keyed Joints in the Construction and Finished States
Author(s) -
Yu Zou,
Dong Xu
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/7252122
Subject(s) - shear (geology) , precast concrete , structural engineering , bearing capacity , shear stress , materials science , direct shear test , geotechnical engineering , composite material , engineering
Joints that represent locations of discontinuity were the prominent factors affecting the overall behavior of precast segmental bridges. In this study, the steel shear key was designed, which was used to transmit the shear stress of the joints. To study the mechanical characteristics of the steel shear keyed joints in the construction and finished states, direct shear experiments and numerical analysis were carried out. The experimental results showed that the steel shear keyed joints had a high bearing capacity and good ductility. Under the action of confining stress, the joints relied on the mechanical occlusion between the steel keys to transmit the shear forces. When the load-displacement curve entered the horizontal stage, it can still bore large relative deformation, and the bearing capacity did not decrease. In the construction state, the inelastic deformation of the steel shear key should be used to control the design value of the temporary load. In the finished state, the bearing capacity of joints should be controlled by the direct shear strength of the steel shear key, which can be calculated according to the shear formula. The shear strength of the material and size of the steel shear key are the main factors affecting the bearing capacity of steel shear keyed joints.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom