z-logo
open-access-imgOpen Access
Genome-Wide Expression Difference of MicroRNAs in Basal Cell Carcinoma
Author(s) -
Hai-Peng Wei,
Song Zhan,
Qingàn Zhu,
Zhen-Juan Chen,
Feng Xian,
Junyuan Chen,
QiLin Zhang,
Jingjie Zhao,
Lingzhang Meng
Publication year - 2021
Publication title -
journal of immunology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.315
H-Index - 83
eISSN - 2314-8861
pISSN - 2314-7156
DOI - 10.1155/2021/7223500
Subject(s) - microrna , biology , basal cell carcinoma , gene , gene expression , computational biology , cancer research , genetics , pathology , basal cell , medicine
Distinct expression of the miRNAs has rarely been explored in basal cell carcinoma (BCC) of skin, and the regulatory role of miRNAs in BCC development remains quite opaque. Here, we collected control tissues from adjacent noncancerous skin ( n = 15; control group) and tissues at tumor centers from patients with cheek BCC ( n = 15; BCC group) using punch biopsies. After six small RNA sequencing- (sRNA-seq-) based miRNA expression profiles were generated for both BCC and controls, including three biological replicates, we conducted comparative analysis on the sRNA-seq dataset, discovering 181 differentially expressed miRNAs (DEMs) out of the 1,873 miRNAs in BCCs. In order to validate the sRNA-seq data, expression of 15 randomly selected DEMs was measured using the TaqMan probe-based quantitative real-time PCR. Functional analysis of predicted target genes of DEMs in BCCs shows that these miRNAs are primarily involved in various types of cancers, immune response, epithelial growth, and morphogenesis, as well as energy production and metabolism, indicating that BCC development is caused, at least in part, by changes in miRNA regulation for biological and disease processes. In particular, the “basal cell carcinoma pathways” were found to be enriched by predicted DEM targets, and regulatory relationships between DEMs and their targeted genes in this pathway were further uncovered. These results revealed the association between BCCs and abundant miRNA molecules that regulate target genes, functional modules, and signaling pathways in carcinogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom