z-logo
open-access-imgOpen Access
The Effects of Dandelion Polysaccharides on Iron Metabolism by Regulating Hepcidin via JAK/STAT Signaling Pathway
Author(s) -
Feng Ren,
Yingying Yang,
Kaixuan Wu,
Tiesuo Zhao,
Yinghao Shi,
Moxuan Song,
Jian Li
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/7184760
Subject(s) - hepcidin , pi3k/akt/mtor pathway , cancer research , biology , protein kinase b , signal transduction , microbiology and biotechnology , chemistry , immunology , inflammation
Recent studies have claimed that iron overload was correlated with the risk of hepatocellular carcinoma (HCC), and our previous studies have also demonstrated that dandelion polysaccharide (DP) suppressed HCC cell line proliferation via causing cell cycle arrest and inhibiting the PI3K/AKT/mTOR pathway, but the effect of DP on metabolism is still not very clear. Here, we aim to clarify the effects of DP on iron metabolism and the underlying mechanism. In this study, we found that DP could reduce iron burden in hepatoma cells and grafted tumors. Hepcidin is a central regulator in iron metabolism. We confirmed that the expression of hepcidin in HCC tumor tissues was significantly higher than that in the adjacent nontumor tissues. The expression of hepcidin was downregulated in the liver of mouse model treatment with DP, as well as in hepatoma cells. Moreover, RNA sequencing and western blot data revealed that DP inhibited the IL-6-activated JAK-STAT signaling pathway. In summary, our results revealed that DP might be a new potential drug candidate for the regulation of iron burden and the treatment of HCC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom