Road Travel Time Prediction Based on Improved Graph Convolutional Network
Author(s) -
Miao Xu,
Hongfei Liu
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/7161293
Subject(s) - computer science , baseline (sea) , adjacency matrix , graph , robustness (evolution) , data mining , adjacency list , artificial intelligence , algorithm , theoretical computer science , biochemistry , oceanography , chemistry , gene , geology
Travel time prediction is playing an increasingly important part in advanced traveler information system (ATIS), which is of great significance to alleviate urban traffic congestion. Although graph convolutional networks have been widely used in road network traffic prediction, spatiotemporal dynamic modeling of urban traffic is still an intractable task. In this study, we propose an improved graph convolutional network (IGC-Net) for travel time prediction. Specifically, we design a modified adjacency matrix by fusing distance and correlation matrix with original adjacency matrix to capture spatial dynamic feature. We then establish three components based on temporal property to capture recent, daily-periodic, and weekly periodic correlations. The comparison experiments with baseline models and variants on a real-world dataset in Beijing are conducted. The results show that the IGC-Net outperforms baseline models in different prediction horizons and has stronger robustness for dynamic traffic prediction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom