z-logo
open-access-imgOpen Access
Astaxanthin‐Mediated Bacterial Lethality: Evidence from Oxidative Stress Contribution and Molecular Dynamics Simulation
Author(s) -
‪Jamiu Olaseni Aribisala,
Sonto Nkosi,
Kehinde Idowu,
Ismaila Olanrewaju Nurain,
Gaositwe Melvin Makolomakwa,
Francis O. Shode,
Saheed Sabiu
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/7159652
Subject(s) - lethality , astaxanthin , oxidative stress , chemistry , dynamics (music) , oxidative damage , biology , microbiology and biotechnology , biophysics , biochemistry , genetics , physics , carotenoid , acoustics
The involvement of cellular oxidative stress in antibacterial therapy has remained a topical issue over the years. In this study, the contribution of oxidative stress to astaxanthin-mediated bacterial lethality was evaluated in silico and in vitro. For the in vitro analysis, the minimum inhibitory concentration (MIC) of astaxanthin was lower than that of novobiocin against Staphylococcus aureus but generally higher than those of the reference antibiotics against other test organisms. The level of superoxide anion of the tested organisms increased significantly following treatment with astaxanthin when compared with DMSO-treated cells. This increase compared favorably with those observed with the reference antibiotics and was consistent with a decrease in the concentration of glutathione (GSH) and corresponding significant increase in ADP/ATP ratio. These observations are suggestive of probable involvement of oxidative stress in antibacterial capability of astaxanthin and in agreement with the results of the in silico evaluations, where the free energy scores of astaxanthins’ complexes with topoisomerase IV ParC and ParE were higher than those of the reference antibiotics. These observations were consistent with the structural stability and compactness of the complexes as astaxanthin was observed to be more stable against topoisomerase IV ParC and ParE than DNA Gyrase A and B. Put together, findings from this study underscored the nature and mechanism of antibacterial action of astaxanthin that could suggest practical approaches in enhancing our current knowledge of antibacterial arsenal and aid in the novel development of alternative natural topo2A inhibitor.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom