z-logo
open-access-imgOpen Access
[Retracted] Design and Simulation of Human Resource Allocation Model Based on Double‐Cycle Neural Network
Author(s) -
Qi Feng,
Zixuan Feng,
Xingren Su
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/7149631
Subject(s) - computer science , artificial neural network , field (mathematics) , matching (statistics) , computation , data mining , blossom algorithm , convolutional neural network , artificial intelligence , machine learning , algorithm , statistics , mathematics , pure mathematics
The rationalization of human resource management is helpful for enterprises to efficiently train talents in the field, improve the management mode, and increase the overall resource utilization rate of enterprises. The current computational models applied in the field of human resources are usually based on statistical computation, which can no longer meet the processing needs of massive data and do not take into account the hidden characteristics of data, which can easily lead to the problem of information scarcity. The paper combines recurrent convolutional neural network and traditional human resource allocation algorithm and designs a double recurrent neural network job matching recommendation algorithm applicable to the human resource field, which can improve the traditional algorithm data training quality problem. In the experimental part of the algorithm, the arithmetic F 1 value in the paper is 0.823, which is 20.1% and 7.4% higher than the other two algorithms, respectively, indicating that the algorithm can improve the hidden layer features of the data and then improve the training quality of the data and improve the job matching and recommendation accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom