z-logo
open-access-imgOpen Access
Application of Multiscale Facial Feature Manifold Learning Based on VGG-16
Author(s) -
Huilin Ge,
Zhiyu Zhu,
Runbang Liu,
Xuedong Wu
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/7129800
Subject(s) - feature (linguistics) , artificial intelligence , pattern recognition (psychology) , nonlinear dimensionality reduction , manifold (fluid mechanics) , computer science , engineering , dimensionality reduction , linguistics , mechanical engineering , philosophy
Purpose. In order to solve the problems of small face image samples, high size, low structure, no label, and difficulty in tracking and recapture in security videos, we propose a popular multiscale facial feature manifold (MSFFM) algorithm based on VGG16. Method. We first build the VGG16 architecture to obtain face features at different scales and construct a multiscale face feature manifold with face features at different scales as dimensions. At the same time, the recognition rate, accuracy rate, and running time are used to evaluate the performance of VGG16, LeNet-5, and DenseNet on the same database. Results. From the results of comparative experiments, it can be seen that the recognition rate and accuracy of VGG16 are the highest among the three networks. The recognition rate of VGG16 is 97.588%, and the accuracy is 95.889%. And the running time is only 3.5 seconds, which is 72.727% faster than LeNet-5 and 66.666% faster than DenseNet. Conclusion. The model proposed in this paper breaks through the key problem in the face detection and tracking problem in the public security field, predicts the position of the face target image in the time dimension manifold space, and improves the efficiency of face detection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom