z-logo
open-access-imgOpen Access
Fuzzy PID Control for Respiratory Systems
Author(s) -
Ibrahim M. Mehedi,
Heidir S. M. Shah,
Ubaid M. AlSaggaf,
Rachid Mansouri,
Maâmar Bettayeb
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/7118711
Subject(s) - pid controller , fuzzy logic , computer science , respiratory system , medicine , control engineering , artificial intelligence , engineering , temperature control
This paper presents the implementation of a fuzzy proportional integral derivative (FPID) control design to track the airway pressure during the mechanical ventilation process. A respiratory system is modeled as a combination of a blower-hose-patient system and a single compartmental lung system with nonlinear lung compliance. For comparison purposes, the classical PID controller is also designed and simulated on the same system. According to the proposed control strategy, the ventilator will provide airway flow that maintains the peak pressure below critical levels when there are unknown parameters of the patient's hose leak and patient breathing effort. Results show that FPID is a better controller in the sense of quicker response, lower overshoot, and smaller tracking error. This provides valuable insight for the application of the proposed controller.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom