A Driving Simulation to Analysis and Quantitative Comparison of Driving Behavior of Guide Signs at Intersections
Author(s) -
Tianzheng Wei,
Tong Zhu,
Chenxin Li,
Haoxue Liu
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/7093096
Subject(s) - legibility , vital signs , computer science , offset (computer science) , driving simulator , evaluation methods , acceleration , simulation , engineering , reliability engineering , medicine , art , physics , surgery , classical mechanics , visual arts , programming language
Guide signs are an important source for drivers to obtain road information. However, the evaluation methods for the effectiveness of guide signs are not unified. The quantitative model for evaluating guide signs needs to be constructed to unify the current system of guide signs. This study aims to take the commonly used guide signs in China as the research object to explore the evaluation method of guide signs at intersections. Eight kinds of guide signs were designed and made based on the common layout (layout 1 and layout 2) and the amount of information on signs (3–6). Thirty-four drivers were recruited to organize a driving simulation based on the visual cognitive tasks. Drivers’ legibility time and driver behavior were obtained by using the driving simulator and E-Prime program. A comprehensive quantitative evaluation model of guide signs was established based on the factor analysis method and grey correlation analysis method from the perspective of safe driving. The results show that there is no significant difference in the SD of speed and the SD of acceleration under the influence of various guide signs. The average vehicle speed and acceleration decrease, and the lateral offset distance of the vehicle increases with the amount of information on guide signs increasing. The quantitative evaluation results of guide signs show that the visual security decreases with the increase of the amount of information on guide signs. And layout 2 has better performance than layout 1 when the amount of information on guide signs is the same. This study not only explores the change rule of driving behavior under the influence of guide signs, but also provides a reference for the selection of guide signs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom