z-logo
open-access-imgOpen Access
A Two-Stage Robust Optimization Method Based on the Expected Scenario for Islanded Microgrid Energy Management
Author(s) -
Qing Duan,
Wanxing Sheng,
Haoqing Wang,
Caihong Zhao,
Chunyan Ma
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/7079296
Subject(s) - microgrid , mathematical optimization , computer science , robust optimization , constraint (computer aided design) , renewable energy , energy management , power (physics) , stage (stratigraphy) , electric power system , energy (signal processing) , mathematics , control (management) , engineering , paleontology , statistics , physics , quantum mechanics , electrical engineering , biology , geometry , artificial intelligence
One of the main challenges in microgrid system energy management is dealing with uncertainties such as the power output from renewable energy sources. The classic two-stage robust optimization (C-TSRO) method was proposed to cope with these uncertainties. However, this method is oriented to the worst-case scenario and is therefore somewhat conservative. In this study, focusing on the energy management of a typical islanded microgrid and considering uncertainties such as the power output of renewable energy sources and the power demand of loads, an expected-scenario-oriented two-stage robust optimization (E-TSRO) method is proposed to alleviate the conservative tendency of the C-TSRO method because the E-TSRO method chooses to optimize the system cost according to the expected scenario instead, while ensuring the feasibility of the first-stage variables for all possible scenarios, including the worst case. According to the structural characteristics of the proposed model based on the E-TSRO method, a column-and-constraint generation (C & CG) algorithm is utilized to solve the proposed model. Finally, the effectiveness of the E-TSRO model and the solution algorithm are analysed and validated through a series of experiments, thus obtaining some important conclusions, i.e., the economic efficiency of system operation can be improved at about 6.7% in comparison with the C-TSRO results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom