z-logo
open-access-imgOpen Access
miR-182-5p Serves as an Oncogene in Lung Adenocarcinoma through Binding to STARD13
Author(s) -
Xuhui Wu,
Wei Wang,
Gongzhi Wu,
Congxiong Peng,
Jichun Liu
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/7074343
Subject(s) - adenocarcinoma , gene silencing , microrna , oncogene , biology , cancer research , lung cancer , gene , lung , cell growth , untranslated region , cell , cancer , messenger rna , medicine , genetics , cell cycle
Lung cancer as one of the commonest invasive malignancies is featured by high morbidity and mortality, wherein lung adenocarcinoma (LUAD) is the most prevalent subtype. Accumulating evidence exhibited that microRNAs are involved in LUAD occurrence and progression. In this study, miR-182-5p was observed to increase in both LUAD tissue and cell lines. Overexpression of miR-182-5p could prominently facilitate cell proliferation, migration, and invasion in LUAD. Through bioinformatics analysis, STARD13 was theorized as the target gene of miR-182-5p, which was lowly expressed in LUAD. Further molecular experiments manifested that miR-182-5p bound to the 3′-untranslated region of STARD13, and there was an inverse correlation between STARD13 and miR-182-5p in LUAD. Rescue experiments demonstrated that silencing STARD13 conspicuously restored the inhibitory effect of decreased miR-182-5p on cell proliferation, migration, and invasion in LUAD. Together, our findings revealed novel roles of the miR-182-5p/STARD13 axis in LUAD progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom