z-logo
open-access-imgOpen Access
Model and Verification of Medical English Machine Translation Based on Optimized Generalized Likelihood Ratio Algorithm
Author(s) -
Peng Yu,
Youyu Zhu
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/7062511
Subject(s) - machine translation , computer science , phrase , translation (biology) , artificial intelligence , identification (biology) , algorithm , natural language processing , example based machine translation , ambiguity , field (mathematics) , bottleneck , function (biology) , rule based machine translation , speech recognition , machine learning , mathematics , biochemistry , chemistry , botany , biology , messenger rna , pure mathematics , gene , evolutionary biology , embedded system , programming language
Phrase identification plays an important role in medical English machine translation. However, the phrases in medical English are complicated in internal structure and semantic relationship, which hinders the identification of machine translation and thus affects the accuracy of translation results. With the aim of breaking through the bottleneck of machine translation in medical field, this paper designed a machine translation model based on the optimized generalized likelihood ratio (GLR) algorithm. Specifically, the model in question established a medical phrase corpus of 250,000 English and 280,000 Chinese words, applied the symbol mapping function to the identification of the phrase’s part of speech, and employed the syntactic function of the multioutput analysis table structure to correct the structural ambiguity in the identification of the part of speech, eventually obtaining the final identification result. According to the comprehensive verification, the translation model employing the optimized GLR algorithm was seen to improve the speed, accuracy, and update performance of machine translation and was seen to be more suitable for machine translation in medical field, therefore providing a new perspective for the employment of medical machine translation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom