z-logo
open-access-imgOpen Access
Improved Height Estimation Using Extended Kalman Filter on UWB‐Barometer 3D Indoor Positioning System
Author(s) -
Ji Li,
Yepeng Wang,
Zhuo Chen,
Linlin Ma,
Suqing Yan
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/7057513
Subject(s) - barometer , computer science , kalman filter , extended kalman filter , estimation , geodesy , real time computing , remote sensing , artificial intelligence , meteorology , geology , geography , management , economics
Indoor 3D positioning system requires precise information from all three dimensions in space, but measurements in the vertical direction are usually interfered by sensors properties, unexpected obstructions, and other factors. Thus, accuracy and robustness are not guaranteed. Aiming at this problem, we propose a novel sensor fusion algorithm to improve the height estimation for a UWB-barometer integrated positioning system by introducing a pseudo reference update mechanism and the extended Kalman filter (EKF). The proposed fusion approach effectively helps with sensing noise reduction and outlier restraint. The results from numerical experiment investigations demonstrate that the accuracy and robustness of the proposed method achieved better improvement in height determination.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom