z-logo
open-access-imgOpen Access
Simulation of Spatially Correlated Multipoint Ground Motions in a Saturated Alluvial Valley
Author(s) -
Ying He,
Xueling Chen,
Zhongxian Liu,
Yang De-jian,
Hai Zhang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/7056096
Subject(s) - alluvium , geology , ground motion , alluvial plain , geotechnical engineering , geomorphology , seismology , paleontology
Based on Biot’s theory, the boundary element method, and spectral representation method, an effective simulation method for multiple-station spatially correlated ground motions on both bedrock and surface is developed, incorporating the spectral density function, coherence function, and site transfer function that consider both the wave scattering effect and the medium saturation. The accuracy and feasibility of the present method are validated by a typical numerical example. Our results indicate that the local site conditions and the saturation property of the medium significantly affect the multipoint spatially correlated earthquake ground motions, especially in the long-period range. It is necessary to use spatially varying ground motions with the rational consideration of local site effects and medium saturation as input during the seismic analysis of large-span structures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom