z-logo
open-access-imgOpen Access
Hybrid Sharpening Transformation Approach for Multifocus Image Fusion Using Medical and Nonmedical Images
Author(s) -
Sarwar Shah Khan,
Muzammil Khan,
Yasser Alharbi,
Usman Haider,
Kifayat Ullah,
Shahab Haider
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/7000991
Subject(s) - sharpening , artificial intelligence , image fusion , computer science , pattern recognition (psychology) , discrete wavelet transform , computer vision , transformation (genetics) , feature (linguistics) , contourlet , wavelet transform , metric (unit) , wavelet , image (mathematics) , biochemistry , chemistry , philosophy , operations management , economics , gene , linguistics
In this study, we introduced a preprocessing novel transformation approach for multifocus image fusion. In the multifocus image, fusion has generated a high informative image by merging two source images with different areas or objects in focus. Acutely the preprocessing means sharpening performed on the images before applying fusion techniques. In this paper, along with the novel concept, a new sharpening technique, Laplacian filter + discrete Fourier transform (LF + DFT), is also proposed. The LF is used to recognize the meaningful discontinuities in an image. DFT recognizes that the rapid change in the image is like sudden changes in the frequencies, low-frequency to high-frequency in the images. The aim of image sharpening is to highlight the key features, identifying the minor details, and sharpen the edges while the previous methods are not so effective. To validate the effectiveness the proposed method, the fusion is performed by a couple of advanced techniques such as stationary wavelet transform (SWT) and discrete wavelet transform (DWT) with both types of images like grayscale and color image. The experiments are performed on nonmedical and medical (breast medical CT and MRI images) datasets. The experimental results demonstrate that the proposed method outperforms all evaluated qualitative and quantitative metrics. Quantitative assessment is performed by eight well-known metrics, and every metric described its own feature by which it is easily assumed that the proposed method is superior. The experimental results of the proposed technique SWT (LF + DFT) are summarized for evaluation matrices such as RMSE (5.6761), PFE (3.4378), MAE (0.4010), entropy (9.0121), SNR (26.8609), PSNR (40.1349), CC (0.9978), and ERGAS (2.2589) using clock dataset.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom