On the Limit Cycles for a Class of Perturbed Fifth-Order Autonomous Differential Equations
Author(s) -
Nabil Sellami,
Romaissa Mellal,
Bahri Cherif,
Sahar Ahmed Idris
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/6996805
Subject(s) - stress (linguistics) , speech recognition , computer science
We study the limit cycles of the fifth-order differential equation x ⋅ ⋅ ⋅ ⋅ ⋅ − e x ⃜ − d x ⃛ − c x ¨ − b x ˙ − a x = ε F x , x ˙ , x ¨ , x ⋯ , x ⃜ with a = λ μ δ , b = − λ μ + λ δ + μ δ , c = λ + μ + δ + λ μ δ , d = − 1 + λ μ + λ δ + μ δ , e = λ + μ + δ , where ε is a small enough real parameter, λ , μ , and δ are real parameters, and F ∈ C 2 is a nonlinear function. Using the averaging theory of first order, we provide sufficient conditions for the existence of limit cycles of this equation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom