z-logo
open-access-imgOpen Access
On the Limit Cycles for a Class of Perturbed Fifth-Order Autonomous Differential Equations
Author(s) -
Nabil Sellami,
Romaissa Mellal,
Bahri Cherif,
Sahar Ahmed Idris
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/6996805
Subject(s) - stress (linguistics) , speech recognition , computer science
We study the limit cycles of the fifth-order differential equation x ⋅ ⋅ ⋅ ⋅ ⋅ − e x ⃜ − d x ⃛ − c x ¨ − b x ˙ − a x = ε F x , x ˙ , x ¨ , x ⋯ , x ⃜ with a = λ μ δ , b = − λ μ + λ δ + μ δ , c = λ + μ + δ + λ μ δ , d = − 1 + λ μ + λ δ + μ δ , e = λ + μ + δ , where ε is a small enough real parameter, λ , μ , and δ are real parameters, and F ∈ C 2 is a nonlinear function. Using the averaging theory of first order, we provide sufficient conditions for the existence of limit cycles of this equation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom