Predicting Cross-Species Infection of Swine Influenza Virus with Representation Learning of Amino Acid Features
Author(s) -
Zheng Kou,
Junjie Li,
Xinyue Fan,
Saeed Kosari,
Xiaoli Qiang
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/6985008
Subject(s) - feature (linguistics) , representation (politics) , probabilistic logic , computer science , feature learning , artificial intelligence , feature selection , feature vector , pattern recognition (psychology) , pandemic , computational biology , biology , medicine , covid-19 , disease , philosophy , linguistics , pathology , politics , political science , infectious disease (medical specialty) , law
Swine influenza viruses (SIVs) can unforeseeably cross the species barriers and directly infect humans, which pose huge challenges for public health and trigger pandemic risk at irregular intervals. Computational tools are needed to predict infection phenotype and early pandemic risk of SIVs. For this purpose, we propose a feature representation algorithm to predict cross-species infection of SIVs. We built a high-quality dataset of 1902 viruses. A feature representation learning scheme was applied to learn feature representations from 64 well-trained random forest models with multiple feature descriptors of mutant amino acid in the viral proteins, including compositional information, position-specific information, and physicochemical properties. Class and probabilistic information were integrated into the feature representations, and redundant features were removed by feature space optimization. High performance was achieved using 20 informative features and 22 probabilistic information. The proposed method will facilitate SIV characterization of transmission phenotype.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom