z-logo
open-access-imgOpen Access
A Deep Learning-Based Framework for Human Activity Recognition in Smart Homes
Author(s) -
Alaeddine Mihoub
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/6961343
Subject(s) - computer science , autoencoder , artificial intelligence , deep learning , machine learning , feature selection , preprocessor , activity recognition , random forest , feature (linguistics) , recurrent neural network , data pre processing , artificial neural network , philosophy , linguistics
Human behavior modeling in smart environments is a growing research area treating several challenges related to ubiquitous computing, pattern recognition, and ambient assisted living. Thanks to recent progress in sensing devices, it is now possible to design computational models able of accurate detection of residents’ activities and daily routines. For this goal, we introduce in this paper a deep learning-based framework for activity recognition in smart homes. This framework proposes a detailed methodology for data preprocessing, feature mining, and deep learning techniques application. The novel framework was designed to ensure a deep exploration of the feature space since three main approaches are tested, namely, the all-features approach, the selection approach, and the reduction approach. Besides, the framework proposes the evaluation and the comparison of several well-chosen deep learning techniques such as autoencoder, recurrent neural networks (RNN), and some of their derivatives models. Concretely, the framework was applied on the “Orange4Home” dataset which represents a recent dataset specially designed for smart homes research. Our main findings show that the best approach for efficient classification is the selection approach. Furthermore, our overall results outperformed baseline models based on random forest classifiers and the principal component analysis technique, especially the results of our RNN-based model for the all-features approach and the results of our autoencoder-based model for the feature reduction approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom