z-logo
open-access-imgOpen Access
Effects of Fermented Houttuynia cordata Thunb. on Diabetic Rats Induced by a High-Fat Diet with Streptozotocin and on Insulin Resistance in 3T3-L1 Adipocytes
Author(s) -
Wannachai Sakuludomkan,
Ranchana Yeewa,
Subhawat Subhawa,
Chakkrit Khanaree,
Arisa Imsumran Bonness,
Teera Chewonarin
Publication year - 2021
Publication title -
journal of nutrition and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.789
H-Index - 42
eISSN - 2090-0732
pISSN - 2090-0724
DOI - 10.1155/2021/6936025
Subject(s) - houttuynia cordata , streptozotocin , insulin resistance , medicine , endocrinology , diabetes mellitus , oxidative stress , insulin , lipolysis , glucose uptake , adipose tissue , chemistry , chromatography , extraction (chemistry)
Houttuynia cordata Thunb. ( plukaow in Thai language) exhibits several biological properties, and many products of H. cordata are therefore commercially available for human consumption, such as fermented juice or tablets as food supplements. This study aimed to investigate the antidiabetic effects of fermented H. cordata (HC) in high-fat diets and streptozotocin-induced diabetic rats. Oral administration of HC at a dose of 100 mg/kg.bw not only maintained bodyweight, food intake, and water consumption but also reduced blood glucose levels and improved glucose tolerance ability in the diabetic rats. Moreover, HC also decreased oxidative stress markers in serum and inflammatory-related mediators in pancreas tissues, indicating the improvement of pancreatic beta-cell function in the diabetic rats. In order to clarify the mechanism of HC, the effects of ethanolic extract of HC (HCE) on insulin resistance were determined in 3T3-L1 adipocytes. FHE could recover glucose uptake and decrease lipolysis in palmitate-treated 3T3-L1 adipocytes. Taken together, these results demonstrate that HC can improve diabetic symptoms by enhancing insulin sensitivity, reducing oxidative stress, and suppressing inflammation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom