z-logo
open-access-imgOpen Access
Automated Diagnosis of Chest X-Ray for Early Detection of COVID-19 Disease
Author(s) -
Ebrahim Mohammed Senan,
Ali Alzahrani,
Mohammed Y. Alzahrani,
Nizar Alsharif,
Theyazn H. H. Aldhyani
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/6919483
Subject(s) - covid-19 , convolutional neural network , artificial intelligence , pandemic , medical diagnosis , computer science , binary classification , medicine , local binary patterns , deep learning , pattern recognition (psychology) , artificial neural network , receiver operating characteristic , sensitivity (control systems) , support vector machine , machine learning , disease , pathology , infectious disease (medical specialty) , image (mathematics) , histogram , electronic engineering , engineering
In March 2020, the World Health Organization announced the COVID-19 pandemic, its dangers, and its rapid spread throughout the world. In March 2021, the second wave of the pandemic began with a new strain of COVID-19, which was more dangerous for some countries, including India, recording 400,000 new cases daily and more than 4,000 deaths per day. This pandemic has overloaded the medical sector, especially radiology. Deep-learning techniques have been used to reduce the burden on hospitals and assist physicians for accurate diagnoses. In our study, two models of deep learning, ResNet-50 and AlexNet, were introduced to diagnose X-ray datasets collected from many sources. Each network diagnosed a multiclass (four classes) and a two-class dataset. The images were processed to remove noise, and a data augmentation technique was applied to the minority classes to create a balance between the classes. The features extracted by convolutional neural network (CNN) models were combined with traditional Gray-level Cooccurrence Matrix (GLCM) and Local Binary Pattern (LBP) algorithms in a 1-D vector of each image, which produced more representative features for each disease. Network parameters were tuned for optimum performance. The ResNet-50 network reached accuracy, sensitivity, specificity, and Area Under the Curve (AUC) of 95%, 94.5%, 98%, and 97.10%, respectively, with the multiclasses (COVID-19, viral pneumonia, lung opacity, and normal), while it reached accuracy, sensitivity, specificity, and AUC of 99%, 98%, 98%, and 97.51%, respectively, with the binary classes (COVID-19 and normal).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom