z-logo
open-access-imgOpen Access
A Multiattention‐Based Supervised Feature Selection Method for Multivariate Time Series
Author(s) -
Li Cao,
Yanting Chen,
Zhiyang Zhang,
Ning Gui
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/6911192
Subject(s) - multivariate statistics , feature selection , series (stratigraphy) , computer science , selection (genetic algorithm) , pattern recognition (psychology) , feature (linguistics) , artificial intelligence , time series , data mining , statistics , machine learning , mathematics , biology , linguistics , philosophy , paleontology
Feature selection is a known technique to preprocess the data before performing any data mining task. In multivariate time series (MTS) prediction, feature selection needs to find both the most related variables and their corresponding delays. Both aspects, to a certain extent, represent essential characteristics of system dynamics. However, the variable and delay selection for MTS is a challenging task when the system is nonlinear and noisy. In this paper, a multiattention-based supervised feature selection method is proposed. It translates the feature weight generation problem into a bidirectional attention generation problem with two parallel placed attention modules. The input 2D data are sliced into 1D data from two orthogonal directions, and each attention module generates attention weights from their respective dimensions. To facilitate the feature selection from the global perspective, we proposed a global weight generation method that calculates a dot product operation on the weight values of the two dimensions. To avoid the disturbance of attention weights due to noise and duplicated features, the final feature weight matrix is calculated based on the statistics of the entire training set. Experimental results show that this proposed method achieves the best performance on compared synthesized, small, medium, and practical industrial datasets, compared to several state-of-the-art baseline feature selection methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom