MicroRNA-34a Promotes EMT and Liver Fibrosis in Primary Biliary Cholangitis by Regulating TGF-β1/smad Pathway
Author(s) -
Ying Pan,
Jing Wang,
Lan He,
Fengchun Zhang
Publication year - 2021
Publication title -
journal of immunology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.315
H-Index - 83
eISSN - 2314-8861
pISSN - 2314-7156
DOI - 10.1155/2021/6890423
Subject(s) - smad , transforming growth factor , cancer research , epithelial–mesenchymal transition , transforming growth factor beta , fibrosis , medicine , microrna , downregulation and upregulation , biology , cancer , metastasis , gene , biochemistry
Background and Aims Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease. We found microRNA-34a (miR-34a), as the downstream gene of p53, was overexpressed in some of fibrogenic diseases. In this study, we sought to explore whether miR-34a plays a role in the fibrosis of PBC.Methods The peripheral blood of PBC patients and controls was collected to analyze the level of miR-34a. Human intrahepatic biliary epithelial cells (HIBEC) were cultured. The expression of miR-34a was regulated by miR-34a mimics and inhibitor. The biomarkers of epithelium-mesenchymal transition (EMT), fibrogenesis, inflammation, and transforming growth factor- (TGF-) β 1/smad pathway were analyzed.Results We found that miR-34a was overexpressed in the peripheral blood in PBC patients. In vitro, overexpressed miR-34a increased the EMT and fibrogenesis activity of HIBEC. Transforming growth factor-beta type 1 receptor (T β R1), TGF- β 1, and p-smad2/3 were upregulated by miR-34a. Inflammatory factors such as IL-6 and IL-17 were also upregulated. Finally, we showed that miR-34a promoted EMT and liver fibrosis in PBC by targeting the TGF- β 1/smad pathway antagonist transforming growth factor-beta-induced factor homeobox 2 (TGIF2).Conclusions Our findings show that miR-34a plays an important role in the EMT and fibrosis of PBC through the TGF- β 1/smad pathway by targeting TGIF2. This study suggests that miR-34a may be a new marker of fibrogenesis in PBC. Inhibition of miR-34a may be a promising strategy in treating PBC and improving the prognosis of the disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom