Remarks on the Systems of Semilinear Fractional Rayleigh-Stokes Equation
Author(s) -
Le Dinh Long
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/6880435
Subject(s) - uniqueness , mathematics , initial value problem , stability (learning theory) , mathematical analysis , banach space , cauchy problem , rayleigh scattering , physics , computer science , machine learning , optics
In this paper, we study the Cauchy problem for a system of Rayleigh-Stokes equations. In this system of equations, we use derivatives in the classical Riemann-Liouville sense. This system has many applications in some non-Newtonian fluids. We obtained results for the existence, uniqueness, and frequency of the solution. We discuss the stability of the solutions and find the solution spaces. Our main technique is to use the Banach mapping theorem combined with some techniques in Fourier analysis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom