HSDP: A Hybrid Sampling Method for Imbalanced Big Data Based on Data Partition
Author(s) -
Liping Chen,
Jiabao Jiang,
Yong Zhang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6877284
Subject(s) - oversampling , resampling , partition (number theory) , pattern recognition (psychology) , classifier (uml) , computer science , sampling (signal processing) , mathematics , sample (material) , artificial intelligence , statistics , data mining , bandwidth (computing) , computer network , chemistry , filter (signal processing) , combinatorics , chromatography , computer vision
The classical classifiers are ineffective in dealing with the problem of imbalanced big dataset classification. Resampling the datasets and balancing samples distribution before training the classifier is one of the most popular approaches to resolve this problem. An effective and simple hybrid sampling method based on data partition (HSDP) is proposed in this paper. First, all the data samples are partitioned into different data regions. Then, the data samples in the noise minority samples region are removed and the samples in the boundary minority samples region are selected as oversampling seeds to generate the synthetic samples. Finally, a weighted oversampling process is conducted considering the generation of synthetic samples in the same cluster of the oversampling seed. The weight of each selected minority class sample is computed by the ratio between the proportion of majority class in the neighbors of this selected sample and the sum of all these proportions. Generation of synthetic samples in the same cluster of the oversampling seed guarantees new synthetic samples located inside the minority class area. Experiments conducted on eight datasets show that the proposed method, HSDP, is better than or comparable with the typical sampling methods for F-measure and G-mean.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom