z-logo
open-access-imgOpen Access
A Fruit Tree Disease Diagnosis Model Based on Stacking Ensemble Learning
Author(s) -
Honglei Li,
Ying Jin,
Jiliang Zhong,
Ruixue Zhao
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6868592
Subject(s) - artificial intelligence , ensemble learning , machine learning , computer science , pear , classifier (uml) , decision tree , stacking , random forest , deep learning , tree (set theory) , pattern recognition (psychology) , mathematics , mathematical analysis , physics , nuclear magnetic resonance , world wide web
Fruit tree diseases have a great influence on agricultural production. Artificial intelligence technologies have been used to help fruit growers identify fruit tree diseases in a timely and accurate way. In this study, a dataset of 10,000 images of pear black spot, pear rust, apple mosaic, and apple rust was used to develop the diagnosis model. To achieve better performance, we developed three kinds of ensemble learning classifiers and two kinds of deep learning classifiers, validated and tested these five models, and found that the stacking ensemble learning classifier outperformed the other classifiers with the accuracy of 98.05% on the validation dataset and 97.34% on the test dataset, which hinted that, with the small- and middle-sized dataset, stacking ensemble learning classifiers may be used as cost-effective alternatives to deep learning models under performance and cost constraints.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom