z-logo
open-access-imgOpen Access
Calculation Model of Shear Capacity of Multiple Composite Core Column Joints Based on Softened Tension-Compression Bar Model
Author(s) -
Xu Wentao,
Chengyu Yang
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/6832188
Subject(s) - composite number , materials science , structural engineering , shear (geology) , joint (building) , core (optical fiber) , softening , composite material , engineering
This paper aims to study the seismic performance of multiple composite core column joints. The influence of the stress mechanism, axial compression ratio, and shear span ratio on the failure mode, hysteretic performance, and shear capacity of the multiple composite core column joints was studied through the low-reversed cyclic loading tests of three specially designed and manufactured multiple composite core column joints. The angle ratio method is used to calculate the effective area of the vertical tie bar, and based on the mechanism of the softening tension-compression bar, the formula for calculating the shear capacity of the joint with multiple composite core column is established. In addition, it is also verified by the test data in this paper. The experimental results show that when the axial compression ratio increases from 0.26 to 0.45, the number and width of cracks at the beam end decrease. When the shear span ratio increases from 1.67 to 2.22, the number and width of cracks at the joint beam end increase. The average value and standard deviation of the ratio between the measured value and the calculated value of the shear capacity are 0.97 and 0.16, indicating that the proposed calculation method has a high agreement with the actual value and strong engineering application.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom