z-logo
open-access-imgOpen Access
Evaluation Model of Physical Education Effect: On the Application of Radial Basis Function-Particle Swarm Optimization Neural Network (RBFNN-PSO)
Author(s) -
Dong Chen
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/6819493
Subject(s) - particle swarm optimization , artificial neural network , computer science , radial basis function , convergence (economics) , artificial intelligence , machine learning , economics , economic growth
This study constructs a new radial basis function-particle swarm optimization neural network (RBFNN-PSO) system, which is applied to the evaluation system of physical education teaching effect. In order to verify the evaluation performance of the RBFNN-PSO system, the traditional RBF neural network system is used as the control, and the training is carried out. The results show that the RBFNN-PSO system can reach the convergence value faster than the traditional RBF neural network system in the training, and the training error is smaller. The results show that the scoring error of RBFNN-PSO system is smaller than that of RBF neural network system, with higher accuracy and smaller error. The experimental results show that the RBFNN-PSO is superior to the traditional RBF neural network in error and accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom