z-logo
open-access-imgOpen Access
A Specific Risk Evaluation System for Live Virtual Machine Migration Based on the Uncertain Theory
Author(s) -
Hang Zhou,
Xinying Zhu,
Jian Wang
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/6784419
Subject(s) - virtualization , computer science , cloud computing , virtual machine , live migration , enhanced data rates for gsm evolution , distributed computing , risk analysis (engineering) , artificial intelligence , operating system , medicine
Benefiting from the convenience of virtualization, virtual machine migration is generally utilized to fulfil optimization objectives in cloud/edge computing. However, live migration has certain risks and unapt decision may lead to side effects and performance degradation. Leveraging modified deep Q network, this paper provided an advanced risk evaluation system. Thorough formulation was given in this paper and a specific integration method was innovated based on uncertain theory. Series experiments were carried on computing cluster with OpenStack. The experimental results showed deep Q network for risk system was reliable while the uncertain approach was a proper way to deal with the risk integration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom