Individual Driver Crash Risk Classification Based on IoV Data and Offline Consumer Behavior Data
Author(s) -
Xuemei Zhao,
Ting Lu,
Yonghui Dai
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/6784026
Subject(s) - computer science , online and offline , random forest , risk management , data mining , machine learning , business , finance , operating system
With the development of big data technologies, usage-based insurance (UBI) has received considerable attention from insurance companies. UBI products focus on identifying the relationship between the individual driver’s risk and online channel behavior variables from Internet of Vehicles (IoV) data. Although omnichannel information integration has promoted the development of many industries, it has not been used to improve the accuracy of driver risk classification models in insurance industries. This paper investigates the role of combining different channel variables in improving the classification of driver’s risk. Specifically, several models, including logistic regression and three different data mining techniques (neural networks, random forests, and support vector machines), augmented with driving behavior data based on the IoV and offline consumer behavior data collected from 4S (Sale, Spare part, Service, Survey) dealers, are applied to the classification model of risk. The empirical results show that the inclusion of online and offline channel data improves the different risk assessments; results also demonstrate the importance of offline consumer behavior variables in different models. These insights have important implications for insurance companies on UBI pricing strategy and cost management.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom