z-logo
open-access-imgOpen Access
Construction and Simulation of Injury Early Warning Model for Retired Athletes Based on Improved Self-organizing Neural Network
Author(s) -
Deli Li
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/6728678
Subject(s) - athletes , warning system , warning signs , physical therapy , physical medicine and rehabilitation , psychology , computer science , medicine , engineering , transport engineering , telecommunications
With the progress of sci-tech, the interdisciplinary and comprehensive development, and various advanced sci-tech gradually integrated into the field of sports, it has become possible to study how to reasonably prevent sports injuries, minimize the risk of sports injuries, and maintain the best physical condition of retired athletes. Due to the long-term high-load exercise of retired athletes during their sports career, athletes' physical functions have been damaged to varying degrees, resulting in more injuries. According to the characteristics that many factors need to be considered in the prediction of retired athletes' injuries, this paper puts forward an improved self-organizing neural network (SOM) method to predict retired athletes' injuries. In this paper, an early warning analysis model of retired athletes' susceptibility to injury based on SOM is proposed, which screens the state of retired athletes' physical function variables in each stage, considers athletes' physical function data whose standard deviation is higher than the limit specification of susceptibility to injury as susceptible injury data, quickly judges all vulnerable injury data, and completes the high-speed early warning analysis of retired athletes' susceptibility to injury.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom