z-logo
open-access-imgOpen Access
An Efficient CNN for Hand X-Ray Classification of Rheumatoid Arthritis
Author(s) -
Gitanjali Mate,
A. K. Kureshi,
Bhupesh Kumar Singh
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/6712785
Subject(s) - convolutional neural network , artificial intelligence , radiography , computer science , expansive , pattern recognition (psychology) , rheumatoid arthritis , artificial neural network , deep learning , machine learning , medicine , radiology , compressive strength , materials science , composite material
Hand Radiography (RA) is one of the prime tests for checking the progress of rheumatoid joint inflammation in human bone joints. Recognizing the specific phase of RA is a difficult assignment, as human abilities regularly curb the techniques for it. Convolutional neural network (CNN) is the center for hand recognition for recognizing complex examples. The human cerebrum capacities work in a high-level way, so CNN has been planned depending on organic neural-related organizations in humans for imitating its unpredictable capacities. This article accordingly presents the convolutional neural network (CNN) which has the ability to naturally gain proficiency with the qualities and anticipate the class of hand radiographs from an expansive informational collection. The reproduction of the CNN halfway layers, which depict the elements of the organization, is likewise appeared. For arrangement of the model, a dataset of 290 radiography images is utilized. The result indicates that hand X-rays are rated with an accuracy of 94.46% by the proposed methodology. Our experiments show that the network sensitivity is observed to be 0.95 and the specificity is observed to be 0.82.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom