A Novel Synergetic LSTM-GA Stock Trading Suggestion System in Internet of Things
Author(s) -
Jimmy MingTai Wu,
Lingyun Sun,
Gautam Srivastava,
Jerry ChunWei Lin
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/6706345
Subject(s) - computer science , futures contract , stock (firearms) , algorithmic trading , trading strategy , stock trading , financial market , stock exchange , electronic trading , stock market , econometrics , financial economics , finance , business , economics , algorithm , mechanical engineering , paleontology , horse , engineering , biology
The Internet of Things (IoT) play an important role in the financial sector in recent decades since several stock prediction models can be performed accurately according to IoT-based services. In real-time applications, the accuracy of the stock price fluctuation forecast is very important to investors, and it helps investors better manage their funds when formulating trading strategies. It has always been a goal and difficult problem for financial researchers to use predictive tools to obtain predicted values closer to actual values from a given financial data set. Leading indicators such as futures and options can reflect changes in many markets, such as the industry’s prosperity. Adding the data set of leading indicators can predict the trend of stock prices well. In this research, a trading strategy for finding stock trading signals is proposed that combines long short-term memory neural networks with genetic algorithms. This new framework is called long short-term memory neural network with leading index, or LSTMLI for short. We thus take the stock markets of the United States and Taiwan as the research objects and use historical data, futures, and options as data sets to predict the stock prices of these two markets. After that, we use genetic algorithms to find trading signals for the designed stock trading system. The experimental results show that the stock trading system proposed in this research can help investors obtain certain returns.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom